Search results for "Radical of a ring"
showing 1 items of 1 documents
Radical Rings with Engel Conditions
2000
Abstract An associative ring R without unity is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R ∘ under the circle operation r ∘ s = r + s + rs on R . It is proved that, for a radical ring R , the group R ∘ satisfies an n -Engel condition for some positive integer n if and only if R is m -Engel as a Lie ring for some positive integer m depending only on n .